Pharmacokinetics of 4,5-bis(*p*-methoxyphenyl)-2-phenylpyrrole-3-acetonitrile in normal and polyarthritic rats

4,5-Bis(p-methoxyphenyl)-2-phenylpyrrole-3-acetonitrile (U-24,568, I) is a potent, orally-active anti-inflammatory agent in the adjuvant-induced polyarthritic rat (Kaiser & Glenn, 1972) and is more active than aspirin or ibuprofen in the treatment of rheumatoid arthritis, but also more toxic (Brooks, Schmid & others, 1970). Kaiser & Glenn (1972) developed a fluorometric method for the determination of I in biological materials and reported that: (a) plasma concentrations in the polyarthritic rat were linearly related to oral dose; (b) anti-inflammatory activity was linearly related to the logarithm of the average plasma concentration in a dosage interval at the equilibrium state; and (c) disappearance of I from circulation in normal rats was slow (half-life, ~ 11.4 h).

Marked reductions in liver microsomal drug metabolizing enzymes occur during the development of adjuvant-induced polyarthritic lesions in rats. Depression of the metabolism of at least 10 drugs involving 3 or more metabolic pathways has been reported (Quevauviller, Chalchat & others, 1968; Morton & Chatfield, 1970; Zak, Honc & Lukas, 1972; Whitehouse & Beck, 1973; Beck & Whitehouse, 1973). The present study compares pharmacokinetic parameters for I after single-dose administration to normal rats and multiple-dose administration to rats with established polyarthritis.

Each of 45 fasted normal male rats (Spartan¹; mean weight, 192 g) received 52·1 mg kg⁻¹ of I in 0·5 ml polysorbate 80 USP by gastric intubation. At specific times from 0 to 24 h subgroups of 5 rats were exsanguinated *via* the dorsal aorta, and serum collected for determination of I by the method of Kaiser & Glenn (1972).

Male rats (Spartan¹; mean weight, 239 g) with severe established polyarthritis (15 days after intradermal injection into the tail of 0.5 mg *Mycobacterium butyricum*² in 0.1 ml mineral oil) were divided into 4 groups of 90 each. Animals received 29 oral doses of I at 0, 2.4, 6.8 or 11.4 mg kg⁻¹, b.i.d. in 0.5 ml polysorbate 80 U.S.P. After the last dose, plasma was obtained from 45 rats per group for determination of plasma inflammation units by the method of Glenn & Kooyers (1966). At specific times from 0 to 24 h, plasma was collected from subgroups of 5 rats each and analysed for I.

System	Regimen	Dose (mg kg ⁻¹)	% IPA*	t _i (h)	T _i (h)
Normal rats	Single dose	52-1	<u> </u>	0.1	11-3
Polyarthritic rats	29th dose, b.i.d.	2·4 6·8 11·4	24 57 63	1·3 0·9 1·9 Mean 1·4	2·3 8·1 5·9 5·4

Table 1. Pharmacokinetic parameters for the drug in rats.

* Percent inhibition of polyarthritis based on plasma inflammation units.

¹ Spartan Research, Haslett, Michigan.

² Difco Laboratories, Detroit, Michigan.

FIG. 1. Mean circulating drug concentrations following single dose (mg kg⁻¹) administration to normal rats $(\bigcirc, 52 \cdot 1)$ and multiple dose (mg kg⁻¹) administration to polyarthritic rats $(\bigoplus, 2\cdot 4; \blacksquare, 6\cdot 8; \triangle, 11\cdot 4)$ versus time. Solid lines represent predicted concentrations calculated from derived pharmacokinetic parameters.

Mean circulating concentrations of I for the various treatments are shown in Fig. 1. These observed data were fitted to a one compartment open model with the nonlinear least squares computer program of Metzler (1970). Solid curves in Fig. 1 indicate that this simple pharmacokinetic model was consistent with the data. Table 1 summarizes the half-lives for appearance $(t_{1/2})$ and disappearance $(T_{1/2})$ of I in the circulation. Cumulative 96 h urinary and faecal excretions of I in normal rats were 0.4 and 26.1% of the dose, respectively. Thus, $T_{1/2}$ represents both metabolism and excretion with the former predominating.

Following multiple dose administration of I to polyarthritic rats, $T_{1/2}$ was not related to dose or to the degree of polyarthritis inhibition but was less (mean, 5.4 h) than that for normal rats (11.3 h). These results indicate that I not only reversed the reduced drug metabolizing capabilities of polyarthritic rats due to its anti-inflammatory activity but also stimulated its own metabolism. No similar study has been reported but the present findings are consistent with the observations of Zak & others (1972) that prolonged hexobarbitone sleeping times and reduced liver microsomal benzpyrene hydroxylase in polyarthritic rats were reversed by treatment with anti-inflammatory drugs (phenylbutazone, indomethacin and flufenamic acid) or a microsomal enzyme inducer (phenobarbitone).

Research Laboratories, The Upjohn Company, Kalamazoo, Michigan 49001 U.S.A.

January 28, 1974

DAVID G. KAISER Arlington A. Forist

REFERENCES

BECK, F. J. & WHITEHOUSE, M. W. (1973). Biochem. Pharmac., 22, 2453-2468.

BROOKS, C. D., SCHMID, F. R., BIUNDO, J., BLAU, S., GONZALEZ-ALCOVER, R., GOWANS, J. D. C. HURD, E., PARTRIDGE, R. E. H. & TARPLEY, E. L. (1970). *Rheumatol. Phys. Med. Suppl.*, 10, 48-63.

GLENN, E. M. & KOOYERS, W. M. (1966). Life Sci., 5, 619-628.

- KAISER, D. G. & GLENN, E. M. (1972). J. pharm. Sci., 61, 1908-1911.
- METZLER, C. M. (1970). Compilation of Symposia Papers, p. 380. APhA Academy of Pharmaceutical Sciences.

MORTON, D. M. & CHATFIELD, D. H. (1970). Biochem. Pharmac., 19, 473-481.

QUEVAUVILLER, A., CHALCHAT, M. A., BROUILHET, H. & DELBARRE, F. (1968). C. r. Seanc. Soc. Biol., 162, 618-621.

WHITEHOUSE, M. W. & BECK, F. J. (1973). Drug Metab. Disp., 1, 251-255.

ZAK, S. B., HONC, F. & LUKAS, G. (1972). Proc. 5th Int. Congr. Pharmacology, 259 (abst. 1549).

1-(Hexahydroazepin-1-yl)-3-*p*-carboxyphenylsulphonylurea — a metabolite of tolazamide in man

Tolazamide [1-(hexahydroazepin-1-yl)-3-*p*-tolylsulphonylurea, I] is a potent, orally-active hypoglycaemic drug. The present communication describes the identification of a major metabolite isolated from human urine.

A 24 h urine sample (695 ml) from a normal male subject following a 2 g oral dose of the drug was adjusted to pH 1 with concentrated HCl and extracted 5 times with equal volumes of methylene chloride. Combined extracts were concentrated to dryness and the residue triturated with chloroform followed by 0.1 N HCl. The insoluble fraction was twice recrystallized from 70% ethanol to yield a product (76 mg) m.p. $180-182^{\circ}$ (uncorrected).

Found: C, 49·4; H, 5·4; N, 12·5; O, 23·0; S, 9·3. Calculated for: $C_{14}H_{19}N_3O_5S$ C, 49·25; H, 5·6; N, 12·3; O, 23·4; S, 9·4.

Potentiometric titration in a 60% ethanol: dimethylformamide mixture give an equivalent weight of 178 (calculated :170.7) and indicated two acidic groups with pKa' 5.64 (characteristic of -COOH) and 7.37 (assigned to $-SO_2-NH-$; pKa' of I under the same conditions was 7.20).

The infrared spectrum showed the characteristic absorptions of I plus the following attributed to a -COOH group: 2660 and 2540 cm⁻¹, acidic-OH; 1420 and 1278 cm⁻¹, $-COO^-$; and 960 cm⁻¹, acidic -OH deformation.

The ultraviolet spectra in acidic and alkaline ethanol showed maxima at 235 ($\epsilon = 17,150$) and 232 ($\epsilon = 12,150$) nm, respectively. The absorption of the metabolite at longer wavelengths than I (maximum in acidic ethanol, 228 nm, $\epsilon = 14\,200$) is typical of an aromatic acid (Louis, Fajans & others, 1956).

From these results it is concluded that this metabolite of I is 1-(hexahydroazepin-1yl)-3-*p*-carboxyphenylsulphonylurea analogous to the major tolbutamide metabolite, 1-butyl-3-*p*-carboxyphenylsulphonylurea (Louis & others, 1956; Thomas & Ikeda, 1966).

Research Laboratories, The Upjohn Company, Kalamazoo, Michigan 49001, U.S.A. ARLINGTON A. FORIST RAY W. JUDY

January 2, 1974

REFERENCES

LOUIS, L. H., FAJANS, S. S., CONN, J. W., STRUCK, W. A., WRIGHT, J. B. & JOHNSON, J. L. (1956). J. Am. chem. Soc., 78, 5701. THOMAS, R. C. & IKEDA, G. J. (1966). J. medl Chem., 9, 507–510.